

## Results and Prospects from T2K

Kirsty Duffy, for the T2K collaboration NuFact 2015, 11<sup>th</sup> August 2015

- The T2K Experiment
- Oscillation Analysis on T2K
- New results from antineutrino running
  - $\bar{\nu}_e$  appearance
  - $\overline{\nu}_{\mu}$  disappearance
- Future prospects





- The T2K Experiment
- Oscillation Analysis on T2K
- New results from antineutrino running
  - $\bar{v}_e$  appearance
  - $\bar{\nu}_{\mu}$  disappearance
- Future prospects





The T2K Experiment







### T2K Near Detectors

Both detectors also used for crosssection measurements: see talks by S. Bolognesi, A. Furmanski, M. Nirkko



#### **INGRID:**

- On-axis
- Used to measure beam stability, estimate flux uncertainty before ND280 fit

#### ND280:

- Off-axis by 2.5° (same as far detector)
- Used to reduce flux and cross-section uncertainties for oscillation analysis:
  - Fine-Grained Detectors: targets.
     Excellent vertexing
  - Time-Projection Chambers: excellent momentum resolution and particle ID







## T2K Far Detector: Super-K



- 50 kton water Cherenkov detector (22.5kton fiducial volume)
- Neutrino flavour identification from pattern of Cherenkov light from charged particle (<1%  $\nu_{\mu}$  misidentified as  $\nu_{e}$ )
- No magnetic field







## **Beam Operations**



7.00x10<sup>20</sup> POT in ∨-mode

4.04x10<sup>20</sup> POT in  $\overline{\nu}$ -mode

Total: 11.04x10<sup>20</sup> POT (14% of total expected POT)

Beam Start: Jan 2010





## Beam Operations







## Neutrino Oscillation at T2K







### Previous T2K Measurements



First measurement of  $v_e$  appearance (7.3 $\sigma$ ).

Independent measurement of  $\theta_{13}$  (analyses performed with and without reactor constraint on  $\theta_{13}$ ,  $sin^2 2\overline{\theta}_{13} = 0.095 \pm 0.01$ )



90% constraint on  $\delta_{CP}$ .

#### Open questions:

- Mass Hierarchy
- CP phase,  $\delta_{CP}$  (appearance measurements at long baseline experiments well suited to this)



World-leading measurement of  $\theta_{23}$ . Significant measurement of  $\Delta m^2_{32}$ .

Abe, K. et al, Physical Review D 91.7 (2015): 072010





## Antineutrino running at T2K







ν only

 $\overline{\nu}$  only

Sensitivity studies using full expected T2K POT ( $7.8 \times 10^{21}$ ), without reactor constraint on  $\theta_{13}$ :

- T2K is sensitive to  $\delta_{CP}$  when combining  $oldsymbol{
  u}$  and  $\overline{oldsymbol{
  u}}$
- Can test CPT theorem, nonstandard matter effects by comparing  $v_{\mu}$  and  $\overline{v}_{\mu}$ disappearance
- Comparison with reactor measurement gives a test of the PMNS framework





- The T2K Experiment
- Oscillation Analysis on T2K
- New results from antineutrino running
  - $\bar{v}_e$  appearance
  - $\bar{\nu}_{\mu}$  disappearance
- Future prospects







### Near Detector Fit

- Near detector fit includes v-mode and  $\overline{v}$ -mode samples
  - ν-mode: CC0π, CC1π, CC Other
  - $\overline{\nu}$ -mode:  $\overline{\nu}_{\mu}$  CC 1 track,  $\overline{\nu}_{\mu}$  CC >1 track,  $\nu_{\mu}$  CC >1 track
- Fit in momentum and angle of outgoing lepton
- Used to:
  - constrain Super-K flux prediction through correlations with Near Detector flux (using beam models)
  - reduce cross-section uncertainty at Super-K by fitting parameter values in underlying models
  - estimate correlations between flux and cross-section parameters

For more information see talk "Experience from T2K near detectors" by Prof. K. Mahn (WG1+2 Parallel)









### Near Detector Fit

- Predicted flux at Super-K is generally increased
- Some cross-section parameters are significantly different to prior values
- In general error on parameters is decreased









## Near Detector Constraint at

## Super-K

The near detector significantly reduces the systematic uncertainty in the predicted event rate at Super-K



| Systematic                    |                 |                                     | Without ND  | With ND |
|-------------------------------|-----------------|-------------------------------------|-------------|---------|
| Flux and<br>Cross-<br>section |                 | Common to ND280/SK                  | 9.2%        | 3.4%    |
|                               | Super-K<br>Only | Multi-nucleon effect on oxygen 9.5% |             | %       |
|                               |                 | All Super-K Only                    | 10.0%       |         |
|                               |                 | All                                 | 13.0% 10.1% |         |
| Final Sta                     | te Interaction  | 2.1%                                |             |         |
| Super-K Detector              |                 |                                     | 3.8%        |         |
| Total                         |                 |                                     | 14.4%       | 11.6%   |





- The T2K Experiment
- Oscillation Analysis on T2K
- New results from antineutrino running
  - $\bar{\nu}_e$  appearance
  - $\bar{\nu}_{\mu}$  disappearance
- Future prospects





Introduce a discrete parameter  $\beta$  to modify the  $\overline{\nu}_e$  appearance probability:

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = \beta \times P_{PMNS}(\overline{\nu}_{\mu} \to \overline{\nu}_{e})$$

Aside from this, assume CPT symmetry (oscillation parameters are the same for neutrinos and anti-neutrinos)

 $\beta$  = 1:  $\overline{\nu}_e$  appearance in accordance with the PMNS prediction (including CP violation)

 $\beta$  = 0: No  $\overline{v}_e$  appearance (new physics!)

β switches this component on/off







Introduce a discrete parameter  $\beta$  to modify the  $\overline{\nu}_e$  appearance probability:

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = \beta \times P_{PMNS}(\overline{\nu}_{\mu} \to \overline{\nu}_{e})$$

We report significance for  $\beta = 1$  in two ways:

- a **p-value** to characterise how anomalous our data is with respect to the  $\beta$  = 0 hypothesis
- a Bayes factor ( $B_{10}$ ) to characterise how our data favours  $\beta = 1$  over  $\beta = 0$

In both cases we present two results: one using shape information in reconstructed (anti-)neutrino energy ( $E_{rec}$ ) and one using shape information from lepton kinematics (p- $\theta$ )





The analysis is based on the **marginal likelihood**, with all parameters other than  $\beta$  integrated out:

$$\mathcal{L}(\beta) = \iint \sum_{SK\ bins} \mathcal{L}_{Poisson,bin}\left(\beta, \vec{o}, \vec{f}\right) \times \pi_{Syst.}(\vec{f}) \times \pi_{Osc.}(\vec{o}) d\vec{o} d\vec{f}$$

Prior from T2K  $\nu$ -mode oscillation parameters fits ( $\delta_{CP} = -1.6$ )

systematic parameters

#### P-value:

Test statistic is  $-2(ln\mathcal{L}(\beta=1) - ln\mathcal{L}(\beta=0))$ 

Compare to ensemble of test experiments created with  $\beta=0$ 







The analysis is based on the **marginal likelihood**, with all parameters other than  $\beta$  integrated out:

$$\mathcal{L}(\beta) = \iint \sum_{SK\ bins} \mathcal{L}_{Poisson,bin}\left(\beta, \vec{o}, \vec{f}\right) \times \pi_{Syst.}(\vec{f}) \times \pi_{osc.}(\vec{o}) d\vec{o} d\vec{f}$$

Prior from T2K  $\nu$ -mode oscillation parameters  $(\delta_{CP} = -1.6)$ 

systematic parameters

#### P-value:

Test statistic is  $-2(ln\mathcal{L}(\beta = 1) - ln\mathcal{L}(\beta = 0))$ 

Compare to ensemble of test experiments created with  $\beta=0$ 

#### **Bayes factor:**

Given by the posterior odds:

$$B_{10} = \frac{\mathcal{L}(Data|\beta = 1)}{\mathcal{L}(Data|\beta = 0)}$$





# v<sub>e</sub> appearance results





## $\overline{v}_e$ appearance: data

- The current data set contains 3 events
- Prediction (using T2K  $\nu$ -mode oscillation parameters) is **3.7 events** under  $\beta = 1$  and **1.3 events** under  $\beta = 0$

#### **Event selection criteria at Super-K**

- Electron-like PID
- Fully contained in fiducial volume
- Only 1 reconstructed ring
- No decay electrons
- $p_e > 100 \text{ MeV}$
- ν Erec < 1250 MeV</li>
- Passes  $\pi^0$  rejection



Data and prediction binned in  $\overline{\nu}$   $E_{rec}$ 





## $\overline{v}_e$ appearance: results



Distribution of test statistic for  $\beta = 0$  using Lepton P- $\theta$  shape information

#### P-values from data fit:

| Shape term                 | P-value |  |
|----------------------------|---------|--|
| $\overline{\nu}$ $E_{rec}$ | 0.16    |  |
| Lepton P-θ                 | 0.34    |  |

#### Bayes factors from data fit:

| Shape term                        | B <sub>10</sub> |
|-----------------------------------|-----------------|
| $\overline{\nu}$ E <sub>rec</sub> | 1.1             |
| Lepton P-θ                        | 0.6             |

Current data set does not provide sufficient evidence to support  $\beta = 1$  over  $\beta = 0$ 





## Future predictions for $\bar{v}_e$ appearance

Current data set is 4.011x10<sup>20</sup> POT and contains 3 events.

Using the fitting method described here, we can expect:

- At 9.0x10<sup>20</sup> POT in  $\overline{\nu}$ -mode ( $\approx$ 1 year): p-value < 0.02, Bayes factor  $\approx$  10
- At 20x10<sup>20</sup> POT in  $\overline{\nu}$ -mode : Bayes factor  $\approx$  100





(Note: predictions assume PMNS prediction is exactly correct, no statistical uncertainty)





- The T2K Experiment
- Oscillation Analysis on T2K
- New results from antineutrino running
  - $\bar{v}_e$  appearance
  - $\overline{\nu}_{\mu}$  disappearance
- Future prospects





## ν<sub>μ</sub> disappearance: analysis method

oscillation parameters

Fit maximises a marginal likelihood,  $\mathcal{L}$ :

systematic parameters

$$\mathcal{L} = \int \sum_{SK, bins} \mathcal{L}_{Poisson, bin}(\vec{o}, \vec{f}) \times \pi_{Syst.}(\vec{f}) d\vec{f}$$

Bin data and prediction in  $\overline{\nu}$  reconstructed energy.

Fix all oscillation parameters except  $sin^2\overline{\theta}_{23}$  and  $\Delta\overline{m}^2_{32}$  using T2K data and PDG 2014.

| $sin^2\theta_{23}$                          | 0.527  | $sin^2\overline{	heta}_{23}$                       | 0—1    |
|---------------------------------------------|--------|----------------------------------------------------|--------|
| $\Delta m^2_{32} \ (\times \ 10^{-3} eV^2)$ | 2.51   | $\Delta \overline{m}^2_{32} (\times 10^{-3} eV^2)$ | 0—20   |
| $sin^2\theta_{13}$                          | 0.0248 | $sin^2\overline{	heta}_{13}$                       | 0.0248 |
| $\delta_{\mathit{CP}}$ (radians)            | -1.55  | $\overline{\delta}_{\mathit{CP}}$ (radians)        | -1.55  |
| $sin^2\theta_{12}$                          | 0.304  | $sin^2\overline{	heta}_{12}$                       | 0.304  |
| $\Delta m^2_{21}  (\times  10^{-5} eV^2)$   | 7.53   | $\Delta \overline{m}^2_{21} (\times 10^{-5} eV^2)$ | 7.53   |





# $\overline{\nu}_{\mu}$ disappearance results





## ν<sub>μ</sub> disappearance: data



34 events in  $\overline{\nu}$ -mode muon-like sample

#### **Event selection criteria at Super-K**

- Muon-like PID
- Fully contained in fiducial volume
- Only 1 reconstructed ring
- ≤1 decay electron(s)
- $p_{\mu} > 200 \text{ MeV}$

Best-fit reconstructed energy spectrum shows clear evidence of oscillation.





## $\overline{\nu}_{\mu}$ disappearance: results



Best fit values: 
$$sin^2\overline{\theta}_{23}=0.46^{+0.14}_{-0.06}$$
  $\Delta\overline{m}^2_{32}=2.50^{+0.3}_{-0.2}\times10^{-3}eV^2$ 





# $\overline{\nu}_{\mu}$ disappearance: Comparison to T2K $\nu_{\mu}$ + $\nu_{e}$ fit



- Results are consistent between neutrinos and antineutrinos
- Antineutrino

   analysis has much
   larger contours





# $\overline{\nu}_{\mu}$ disappearance: Comparison to MINOS

- MINOS contour was made in  $sin^2 2\overline{\theta}_{23}$  and unfolded
- Includes ν̄ beam and atmospheric data
- T2K contour is slightly smaller in  $sin^2\overline{\theta}_{23}$ , and both see a nonmaximal best-fit point
- Results are compatible



MINOS contour from P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 110, 251801 (2013)





- The T2K Experiment
- Oscillation Analysis on T2K
- New results from antineutrino running
  - $\bar{v}_e$  appearance
  - $\bar{\nu}_{\mu}$  disappearance
- Future prospects





## Analysis Updates

- Analysis improvement: add FGD 2 sample to ND280 fit
  - FGD 2 target material includes water (same as Super-K)
  - Addition of FGD 2 data will allow ND to constrain more cross-section systematics
    - Current ND280 fit has little power to constrain systematics on oxygen ("Super-K only cross-section uncertainty" from table on slide 13)
    - Relative error between interactions on carbon and oxygen not well understood
    - These systematics account for the majority of the cross-section uncertainty
- **Joint fit** of v-mode and  $\overline{v}$ -mode data
  - Better constraint of  $\delta_{\mathit{CP}}$
  - Test PMNS framework and search for nonstandard matter effects or CPT violation





## Summary

- Presented first T2K results based on anti-neutrino data:
  - Analysis of  $\overline{\nu}_e$  appearance
    - P-value > 15%, Bayes factor ≈ 1
  - Measurement of  $\overline{\nu}_{\mu}$  disappearance
    - $sin^2 \overline{\theta}_{23} = 0.46^{+0.14}_{-0.06}$
    - $\Delta \overline{m}^2_{32} = 2.50^{+0.3}_{-0.2} \times 10^{-3} eV^2$
- Both analyses are statistics-limited
- Upcoming analysis improvements: Near-detector water sample and joint  $\nu$ -mode +  $\overline{\nu}$ -mode fit
- $\overline{\nu}$ -mode running continues: collect more data and provide improved measurement of anti-neutrino oscillation





# Backup slides





### Previous T2K Results



## ND280 Event Selection

ND280 uses different event selections for the  $\nu$ -mode and  $\overline{\nu}$ -mode samples (both necessary because Super-K can't distinguish charge)

#### $\overline{\nu}$ selection

Select CC  $\overline{\nu}_{\mu}$  candidates based on interactions with  $\mu^{+}$ :

- Highest momentum track in event has positive charge (compatible with  $\mu^+$ )
- This track has PID compatible with a muon

## CC 1 track and CC > 1 track $(\overline{\nu} \text{ and } \nu \text{ selection in } \overline{\nu}\text{-mode})$

Separate into two samples based on number of tracks in final state

- CC 1 track (sensitive to T2K signal mode)
- CC >1 track (sensitive to T2K background modes)

#### ν selection

Select CC  $v_{\mu}$  candidates based on interactions with  $\mu^{-}$ :

- Highest momentum track in event has negative charge (compatible with  $\mu^{-}$ )
- This track has PID compatible with a muon

## CC $0\pi$ , CC $1\pi$ , CC Other ( $\nu$ selection in $\nu$ -mode)

Separate into three samples based on presence of charged pion in final state

 Pions identified using track multiplicity, dE/dX in TPCs, photons in ECALs\





## Beam Content (v-mode and $\overline{v}$ -mode)

- Much more wrong-sign contamination in  $\overline{\nu}$ -mode than  $\nu$ -mode beam
- This, and smaller cross-sections for  $\overline{\nu}$  than  $\nu$ , lead to the right-sign interaction rate in  $\overline{\nu}$ -mode being roughly 1/3 of the right-sign interaction rate in  $\nu$ -mode









## Event Vertices at Super-K (v-mode)





 $\overline{\nu}$ -mode  $\mu$ -like selection 34 events

- Beam direction
- Fiducial volume boundary
- Events during run 5
- Events during run 6
- □ □ Out of fiducial volume events

 $\overline{\nu}$ -mode e-like selection 3 events





## Event Vertices at Super-K (v-mode)





ν-mode μ-like selection 120 events

- Beam direction
- Fiducial volume boundary
- Events during run 1+2+3
- Events during run 4
- □ □ Out of fiducial volume events

ν-mode e-like selection 28 events





# $\overline{v}_e$ appearance: sensitivity

Calculate 'expected' p-value as the mean p-value for an ensemble of fake data experiments created with  $\beta = 1$ 



Distribution of p-value for  $\beta = 1$  fake experiments using Lepton P- $\theta$  shape information Mean p-value = 0.134



Distribution of p-value for  $\beta$  = 1 fake experiments using  $\overline{\nu}$  E<sub>rec</sub> shape information

Mean p-value = 0.14





# $\overline{v}_e$ appearance: Rate-only p-value



#### Rate-only p-value:

Fraction of test experiments (created with  $\beta = 0$ ) that have as many or more candidates as the T2K data

| 'Expected'<br>p-value | Data p-value |
|-----------------------|--------------|
| 0.20                  | 0.26         |



#### 'Expected' p-value:

Mean p-value from fitting an ensemble of fake data experiments created with  $\beta = 1$ 





# $\bar{v}_e$ appearance: p-value for $\beta = 1$



Distribution of test statistic for  $\beta = 1$  using Lepton P- $\theta$  shape information

#### P-values from data fit:

| Shape<br>term              | P-value<br>(cf. β = 0) | P-value<br>(cf. β = 1) |
|----------------------------|------------------------|------------------------|
| $\overline{\nu}$ $E_{rec}$ | 0.16                   | 0.28                   |
| Lepton P-θ                 | 0.34                   | 0.14                   |

#### Bayes factors from data fit:

| Shape<br>term              | B <sub>10</sub> (cf. β = 0) | $B_{01}$ (cf. $\beta = 1$ ) |
|----------------------------|-----------------------------|-----------------------------|
| $\overline{\nu}$ $E_{rec}$ | 1.1                         | 0.9                         |
| Lepton P-θ                 | 0.6                         | 1.7                         |

Current data set does not provide sufficient evidence to support  $\beta = 1$  over  $\beta = 0$ 





# $\overline{v}_e$ appearance: shape terms

Why is the result so different depending on which shape term we use?

#### Data in lepton p-θ:



#### Data in $\overline{\nu}$ E<sub>rec</sub>:







## Bayes factors

- The Bayes factor gives the posterior odds (given the data) of the two models  $\beta = 1$  and  $\beta = 0$ .
- If we use equal priors on the two models it is equal to the ratio of marginal likelihoods:

$$B_{10} = \frac{\mathcal{L}(Data|\beta = 1)}{\mathcal{L}(Data|\beta = 0)}$$

By imposing the condition that the two models span the whole space of possibility, we can find the 'level of belief' in the  $\beta$  = 1 model given the data

| B <sub>10</sub> | log <sub>10</sub> B <sub>10</sub> | Level of belief in $\beta = 1$ |
|-----------------|-----------------------------------|--------------------------------|
| < 1             | < 0                               | < 50%                          |
| 10              | 1                                 | 91%                            |
| 100             | 2                                 | 99%                            |





## Comparing Bayes factors to p-values

There is no easy way to relate a Bayes factor to a p-value, because they have a fundamentally different interpretation:

- P-value: how likely is it that these data have arisen by chance under the null hypothesis?
  - Can only be used to reject hypotheses
  - Does not provide evidence in favour of the alternative
- Bayes factor: likelihood that a given hypothesis is true
  - Both hypotheses on equal footing
  - Can provide evidence for the null or for the alternative

**However**, we can relate the Bayes factor to the test statistic used to create the p-value (cross-check between analyses)





# Priors for $\overline{v}_e$ appearance analysis

Priors for the oscillation parameters were taken from the posterior of the T2K Run 1-4 joint fit (2014):



 $\delta_{CP} - sin^2 \theta_{13}$ Normal Hierarchy



 $\delta_{CP} - sin^2 \theta_{13}$ Inverted Hierarchy



 $\Delta m^2_{32} - \sin^2 \theta_{23}$ Both Hierarchies





# $\overline{\nu}_{\mu}$ disappearance: Effect of systematics



Analysis is still very much statistics-dominated





# $\overline{\nu}_{\mu}$ disappearance: Bayesian vs. Frequentist approach

T2K has both Bayesian and Frequentist analyses, which produce two different sets of contours:

- Frequentist: confidence intervals (if you repeated the experiment, there is a 90% chance of getting a best-fit point within the 90% contour)
- Bayesian: credible intervals (given this experiment with this data, there is a 90% chance that the true value is within the 90% contour)

These sound similar but are very different in philosophy – may produce very different results!





# $\bar{\nu}_{\mu}$ disappearance: Bayesian vs.

## Frequentist approach

Expected confidence and credible intervals studied by fitting an

Asimov data set

"Asimov": the content of every bin in the 'data' is set exactly equal to the PMNS prediction (no statistical errors)





